SBC — Proceedings of SBGames 2019 — ISSN: 2179-2259

Computing Track — Short Papers

RPG Maker Puzzle Archetypes: Analysis, Evaluation, Refactoring and Extension

Joimar Brito Gongalves Filho, Jodo Gabriel Lima Moraes, Victor Travassos Sarinho
Universidade Estadual de Feira de Santana (UEFS)
Laboratério de Entretenimento Digital Aplicado (LEnDA)
Feira de Santana, Bahia, Brazil
Jjoimarbgf@ gmail.com, joaofeirense @ gmail.com, vsarinho@ uefs.br

Abstract—The presence of puzzles in RPGs is very common
in the history of digital games, being a foundation for the
development of different successful games in the industry. This
paper presents a study of RPG puzzle archetypes provided
by the RPG Maker MV developer community. For this, the
identification of puzzle types, the selection of puzzle-making
techniques, the implementation and refactoring of puzzle pro-
totypes and the extension of evaluated puzzle archetypes were
performed.

Keywords-rpg maker mv; rpg puzzles; puzzle archetypes;

I. INTRODUCTION

The genre concept has an important influence on digital
games, taking into account game goals and objectives, the
gameplay nature, and even the game characters themselves
[1]. Puzzle games, for example, represent a game category
that does not have a formal definition, but have a set of
characteristics and limitations that usually involve shapes,
colors or symbols that must be arranged to produce a certain
pattern [2]. In the same way, the Role Playing Games (RPGs)
category puts the player into a fictional scenario, assuming
different responsibilities based on the established narrative
and defined roles in the game [3].

The presence of puzzles in RPGs is very common, work-
ing as a model for the development of several blockbuster
games around the world (The Legend of Zelda and Final
Fantasy, for example). This combination amplifies the com-
plexity of a game, contributing to the player immersion who
needs to look for a solution in every mystery proposed by
the fictional game world.

Regarding the development of RPGs, several tools have
been built along the years to achieve a quick production
cycle. As an example, the RPG Maker is a framework that
has become one of the most popular game engines for RPG
development [4]. However, the native RPG Maker resources
to create puzzles are rather limited, demanding the use of
more complex scripts to develop better elaborated puzzles
[5]. The lack of a formal documentation to teach how to
create determined puzzle types represents a current devel-
opment challenge in the RPG Maker community, creating
a dependency with development forums to find compatible
puzzle models to build the desired application.

This article presents the analysis of some puzzle models
capable of being applied in the development of distinct

RPGs. The selected development platform was the RPG
Maker MV and the following studies were conducted: 1)
Identification of preconceived puzzle types for the frame-
work; 2) Selection of puzzle-making techniques released by
the development community; 3) Implementation of puzzle
prototypes based on selected techniques, including feasi-
bility verification and developed refactoring; and the 4)
Extension of the evaluated puzzles through the addition of
personalized code and community created plugins.

II. METHODOLOGY AND RESULTS

A. Collection of Puzzles

There are different types of mechanics that guide the
creation of digital RPGs [6]. However, there is no consensus
over the categorization for puzzles in RPGs, requiring an
extra effort to fit them in specific categories. In this sense,
the first stage of this work is to describe the types of puzzles
preconceived and indicated by the RPGMaker tool, such as:

o Sequence: Requires a sequence of actions in the correct
order, such as “pulling lever A and then B” or “lighting
lamp 1 and then lamp 2”. Such puzzles usually become
memory games, where the game shows a correct order
and requires the player to repeat it.

o Mechanism: Set of keys that require a switch to be
activated to open a door. Sometimes involves a pressure
point, where an object must be placed over the point in
question to keep it active. Unlike the Sequence puzzles,
the change of one switch value in a Mechanism puzzle
can modify the state of the others.

As second stage of this work, a research was made in
RPGMaker development communities looking for Sequence
and Mechanism puzzles represented as puzzle archetypes
that could be used by this tool. As a result, 3 common puzzle
archetypes were found:

e Password: Sharing Sequence and Mechanism character-
istics, this archetype uses a finite number of attributes
that have to be inserted. If the position of the inputs
are correct, the password is valid. Numbers, words,
colours or any other information that can be transcribed
as a logic value can be used as a password for this
archetype.

XVIII SBGames — Rio de Janeiro — RJ — Brazil, October 28th — 31th, 2019 615

SBC — Proceedings of SBGames 2019 — ISSN: 2179-2259

o Sliding Block: Represents a hybrid between Sequence
and Mechanism puzzles, once it is based on interaction
with objects and positions in a scenario. For this
archetype, the order in which the player actions are
performed influences the end result to solve the puzzle.

e Six Lights: Represents a Mechanism puzzle with an
interdependence between switches. Basically this type
of puzzle proposes to the player to turn all switches
from state A to state B, but for each switch, once its
current state changes, the state of other nearby switches
will also change.

B. Evaluating Puzzle Archetypes

To verify and validate identified puzzle archetypes, some
refactored prototypes were developed. They are based on
the original code of each previously mentioned archetype,
as the original versions have a poor performance or design
limitation in some aspects.

Figure 1. Password puzzle example.

1) Password: As illustrated by this archetype example
(Figure 1), there is a four buttons panel to be used by
the player, where each button will change the color when
pressed. If the buttons are pressed in the correct order, the
door in the scene will open.

Similar algorithm and performance were identified in
Password codes during the research, making unnecessary to
choose an specific code to evaluate this puzzle archetype.
In this sense, the selected code from the development
community (Figure 2) applies a password logic by the in-
teraction between different buttons, and each one is capable
of assuming a true or false logic value.

&Play SE : Switch3 (9@, 100, @)

#Control Self Switch:A = ON

®Control Self Switch:B = OFF

&Control Variables : #0801 Door Switch Puzzle += 38

Figure 2. Code of a button used by the password puzzle.

Computing Track — Short Papers

Figure 3. Refactored code of the password puzzle.

The code makes each switch command to increment the
value of a specific integer variable. Each button has a specific
weight value that is summed across themselves. If the result
is a predetermined correct value, the puzzle is solved. It is
noticeable that this strategy only works if the buttons can
assume boolean values, requiring an algorithm change if the
buttons are designed to assume a range of values.

In the refactored code every button is associated to a
specific variable (“passwd” followed by a number) and color
(red, green, yellow and purple), where the colors are linked
to an integer value from these variables (Figure 3). Once
the variable values are according to what the conditional
structures demands, the system will see the password as
correct.

2) Sliding Block: As illustrated in Figure 4, the scenario
is showing some barrels that represent obstacles to the
stones. They stop the sliding motion of the stones, keeping
them standing in a useful position for puzzle dynamics. The
computational logic, which recognizes the correct position
of each stone is responsible to solve the proposed puzzle.

Figure 4. Sliding Block puzzle example.

XVIII SBGames — Rio de Janeiro — RJ — Brazil, October 28th — 31th, 2019 616

SBC — Proceedings of SBGames 2019 — ISSN: 2179-2259

In the refactored code, it was changed from the original
to minimize the memory access and reduce the effects of
excessive logic checks (Figure 5).

The system monitor controls all moving parts of the
puzzle using “boulder” named variables. If the “stone 17,
associated to the “boulder1lx” and “boulderly” variables,
is in the correct position, which is indicated by the “posx”
and “posy” variables, the system recognizes that the “stone
17 is in the correct position (Figure 6). To solve the puzzle,
all four stones need to be in their respective correct position

3) Six Lights: As illustrated in Figure 7, the scenario
represents six different lights that change their own color
when the player interacts with them. The puzzle objective
is to inverse all crystal light values from the original one,
where any interaction with one light influences other nearby
lights.

Each crystal is represented by the respective variable
“c...” (Figure 8). When an interaction occurs, the crystal
inverts the current value and the values of others crystals

&1f : Script © (getEventX(3) getEventX(1) || getEventX(3
@11 : Script | (getEventX(4) == getEventX(1) || getEventX(4)
@®Show Animation : Player, Fog
®Text
Puzzle Complete!
&®Play ME : Victory2 (98, 109, @
&
: End
*
: End
-
Figure 5. Partial description of the Sliding Blocks original code.

+
+
+
4
\ 4
\ 4
+
+
+
+
+

Figure 6. Refactored Sliding Blocks code.

Computing Track — Short Papers

Figure 7. Six Lights puzzle example.

Figure 8. Refactored Six Lights code.

Figure 9. Partial description of the original Six Lights code.

next. The comparative study between the initial version and
the refactored one reveals that the original implementation
performs an extra memory access (Figure 9), making an
unnecessary checking in each variable associated to the
crystal.

XVIII SBGames — Rio de Janeiro — RJ — Brazil, October 28th — 31th, 2019 617

SBC — Proceedings of SBGames 2019 — ISSN: 2179-2259

Figure 10. Light detection mechanics provided by a RPG Maker plugin.

Figure 11.

Code for the player’s light detection

C. Extending Puzzle Archetypes

After the verification and validation of the refactored
codes, an extension was performed for the respective Pass-
word, Sliding Block and Six Lights puzzles by the usage of
available RPG Maker plugins. In general, it is a common
action into the development community, where personalized
libraries that allow the creation of advanced mechanics in
several RPGs are available to functionally extend them. As a
result, new aesthetic and gameplay perspective about devel-
oped puzzles can be provided, extending their functionalities
with new game mechanics and dynamics possibilities.

As an example, together with the logic applied in the
previous puzzles, a plugin that allows the development of
a mechanics associated to the light detection was used
(Figure 10). The featured mechanics consists of making
constant assessments of monster positions in relation to the
player, that has a light source attached to it (flashlight)
that highlights the area that the player is facing. Once the
monsters are in reach of the light cast by the player, they
briefly stop following it (Figure 11).

Computing Track — Short Papers

ITII. CONCLUSION AND FUTURE WORK

This paper presented a study of puzzle archetypes for
RPG Maker MV in an analysis, evaluation, refactoring
and extension perspective. It is an important research that
shows different types of RPG puzzles strategies, as well as
development difficulties and available opportunities for the
application of reusable approaches in the production of RPG
puzzles.

In fact, regarding the identification and analysis of devel-
oped puzzles by the RPG Maker MV community, puzzles
that do not use native framework resources, in this case
derived from available plugins, still need to be studied
and properly modeled. They represent a hack to avoid
programming limitations of the native framework, providing
as a result a great variety of archetypes that were not be
identified and analyzed yet.

Regarding the refactoring perspective, it was noticed that
there is no common effort for the application of heuristics
and memory optimization in the community codes. The
study of these codes also reveals the prioritization of aesthet-
ics and functionality over efficiency and high performance,
which can lead to changes in the player experience in real
time execution. Therefore, optimization and reuse oppor-
tunities are opened for RPG puzzles in the RPG Maker
environment.

Finally, considering the extension perspective, by com-
bining with available RPG plugins, many types of game
mechanics and dynamics can be provided to the identified
puzzle archetypes, introducing a new aesthetic and gameplay
perspective about developed puzzles. In this sense, there is
an interesting research opportunity to explore and expand the
cataloged dynamics regarding puzzles and existing RPGs,
and to define configuration features for the RPG puzzle
domain to allow the production of RPG puzzles in large
scale.

REFERENCES

[1] M. J. Wolf, The medium of the video game. University
of Texas Press, 2001.

[2] K. G. P A; and S. K, A survey of np-complete puz-
zles, international computer games association journal,
2008.

[31 J. G. Cover, The Creation of Narrative in Tabletop
Role-Playing Games. McFarland Company, 2010.

[4] M. Sayer. (2017). The surprising explosion of rpg
maker on steam, [Online]. Available: https://www.
pcgamer.com/the- surprising-explosion- of-rpg-maker-
on-steam/. (accessed: 19/07/2018).

[5] D. Perez, Beginning RPG Maker MV. Apress, 2016.

[6] M. Conforti. (2013). Categories of puzzles, [Online].
Available: http://blog . rpgmakerweb.com/ tutorials/
categories-of-puzzles/. (accessed: 11/07/2018).

XVIII SBGames — Rio de Janeiro — RJ — Brazil, October 28th — 31th, 2019 618

